Tobit model estimation and sliced inverse regression
نویسندگان
چکیده
It is not unusual for the response variable in a regression model to be subject to censoring or truncation. Tobit regression models are specific examples of such a situation, where for some observations the observed response is not the actual response, but the censoring value (often zero), and an indicator that censoring (from below) has occurred. It is well-known that the maximum likelihood estimator for such a linear model assuming Gaussian errors is not consistent if the error term is not homoscedastic and normally distributed. In this paper, we consider estimation in the Tobit regression context when homoscedasticity and normality of errors do not hold, as well as when the true response is an unspecified nonlinear function of linear terms, using sliced inverse regression (SIR). The properties of SIR estimation for Tobit models are explored both theoretically and based on extensive Monte Carlo simulations. We show that the SIR estimator is a strong competitor to other Tobit regression estimators, in that it has good properties when the usual linear model assumptions hold, and can be much more effective than other Tobit model estimators when those assumptions break down. An example related to household charitable donations demonstrates the usefulness of the SIR estimator.
منابع مشابه
Sliced inverse regression in reference curves estimation
In order to obtain reference curves for data sets when the covariate is multidimensional, we propose in this paper a new procedure based on dimension-reduction and nonparametric estimation of conditional quantiles. This semiparametric approach combines sliced inverse regression (SIR) and a kernel estimation of conditional quantiles. The asymptotic convergence of the derived estimator is shown. ...
متن کاملReference curves estimation via Sliced Inverse Regression
In order to obtain reference curves for data sets when the covariate is multidimensional, we propose a new methodology based on dimension-reduction and nonparametric estimation of conditional quantiles. This semiparametric approach combines sliced inverse regression (SIR) and a kernel estimation of conditional quantiles. The convergence of the derived estimator is shown. By a simulation study, ...
متن کاملOn Sliced Inverse Regression With High-Dimensional Covariates
Sliced inverse regression is a promising method for the estimation of the central dimension-reduction subspace (CDR space) in semiparametric regression models. It is particularly useful in tackling cases with high-dimensional covariates. In this article we study the asymptotic behavior of the estimate of the CDR space with high-dimensional covariates, that is, when the dimension of the covariat...
متن کاملLocalized Sliced Inverse Regression
We developed localized sliced inverse regression for supervised dimension reduction. It has the advantages of preventing degeneracy, increasing estimation accuracy, and automatic subclass discovery in classification problems. A semisupervised version is proposed for the use of unlabeled data. The utility is illustrated on simulated as well as real data sets.
متن کاملLikelihood-based Sufficient Dimension Reduction
We obtain the maximum likelihood estimator of the central subspace under conditional normality of the predictors given the response. Analytically and in simulations we found that our new estimator can preform much better than sliced inverse regression, sliced average variance estimation and directional regression, and that it seems quite robust to deviations from normality.
متن کامل